The number of lotto Recommend Systems with R & Analytics

  • 1 ~ 730회차 Lotto Numbers
  • Association Rules

    Load Library & Data

library(arules)
library(reshape2)
lotte <- read.csv("lotto.csv")
lotte <- lotte[,-8]
colnames(lotte) <- c("seq","N1","N2","N3","N4","N5","N6")

회차 별 뽑힌 숫자.

  • 보너스 숫자 제외
print(head(lotte[order(lotte$seq, decreasing = F),]))
    seq N1 N2 N3 N4 N5 N6
730   1 10 23 29 33 37 40
729   2  9 13 21 25 32 42
728   3 11 16 19 21 27 31
727   4 14 27 30 31 40 42
726   5 16 24 29 40 41 42
725   6 14 15 26 27 40 42

Data Reshaping

  • \(Transacition\ Data\) 형성을 위해 \(Reshape\) (\(Melt\)를 \(seq\)를 기준으로 수행)
melt_lotte <- melt(lotte, id="seq") # seq(회차)를 기준으로 데이터 Melt
print(melt_lotte[melt_lotte$seq ==730,]) # 확인
     seq variable value
1    730       N1     4
731  730       N2    10
1461 730       N3    14
2191 730       N4    15
2921 730       N5    18
3651 730       N6    22

Pick data from DF

data <- melt_lotte[,c(1,3)] # seq, value
print(head(data[order(data$seq,decreasing = T),]))
     seq value
1    730     4
731  730    10
1461 730    14
2191 730    15
2921 730    18
3651 730    22

Split Data with seq number

  • \(Value\)를 \(Seq\)로 \(Split\)한다.
print(head(split(data$value, data$seq)))
$`1`
[1] 10 23 29 33 37 40

$`2`
[1]  9 13 21 25 32 42

$`3`
[1] 11 16 19 21 27 31

$`4`
[1] 14 27 30 31 40 42

$`5`
[1] 16 24 29 40 41 42

$`6`
[1] 14 15 26 27 40 42

Make Transactions

trans <- as(split(data$value, data$seq), "transactions") #transactions 메소드
trans
transactions in sparse format with
 730 transactions (rows) and
 45 items (columns)

Inspect a transaction

  • 각 회차별 나온 숫자를 Transaction으로 변형
print(inspect(trans[1:10]))
     items               transactionID
[1]  {10,23,29,33,37,40} 1
[2]  {9,13,21,25,32,42}  2
[3]  {11,16,19,21,27,31} 3
[4]  {14,27,30,31,40,42} 4
[5]  {16,24,29,40,41,42} 5
[6]  {14,15,26,27,40,42} 6
[7]  {2,9,16,25,26,40}   7
[8]  {8,19,25,34,37,39}  8
[9]  {2,4,16,17,36,39}   9
[10] {9,25,30,33,41,44}  10
                   items transactionID
[1]  {10,23,29,33,37,40}             1
[2]   {9,13,21,25,32,42}             2
[3]  {11,16,19,21,27,31}             3
[4]  {14,27,30,31,40,42}             4
[5]  {16,24,29,40,41,42}             5
[6]  {14,15,26,27,40,42}             6
[7]    {2,9,16,25,26,40}             7
[8]   {8,19,25,34,37,39}             8
[9]    {2,4,16,17,36,39}             9
[10]  {9,25,30,33,41,44}            10

Image of Transaction

  • 1 ~ 45 까지 숫자 중 각 회차별 새당 되는 숫자에 색이 칠해진다.
options(repr.plot.width=4,repr.plot.height=2)
image(trans[1:10])

png

Check Frequency of items

  • 각 회차에 나온 개별의 숫자들의 빈발 정도를 확인 (absolute : Counts of values)
print(t(itemFrequency(trans, type="absolute")))
       1  2  3   4   5  6   7   8  9 10  11 12  13  14 15 16  17  18 19  20 21
[1,] 109 95 96 105 102 91 100 104 72 99 101 94 101 105 99 89 105 100 98 116 90
     22 23 24 25  26  27 28 29 30 31 32  33  34 35 36  37 38 39  40 41 42  43
[1,] 82 90 95 99 100 111 85 91 87 98 85 101 113 92 96 108 91 99 114 86 87 101
      44 45
[1,] 100 98

Check Posibility of items

  • 각 회차에 나온 개별 숫자들의 나온 확률을 확인
print(t(round(itemFrequency(trans)[order(itemFrequency(trans), decreasing = TRUE)],2)))
       20   40   34   27    1   37    4   14   17    8    5   11   13   33   43
[1,] 0.16 0.16 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
        7   18   26   44   10   15   25   39   19   31   45    3   36    2   24
[1,] 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13
       12   35    6   29   38   21   23   16   30   42   41   28   32   22   9
[1,] 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.1

Plotting items with support

  • 상위 20개 지지도를 가진 Items를 Plotting
options(repr.plot.width=4,repr.plot.height=4)
itemFrequencyPlot(trans, topN = 20, main = "support top 20 items",cex.names=0.6)

png

Making rules with transaction data, Lotte

  • 최소 지지도를 넘는 빈발 집합을 출력.
  • Transaction ID 는 필요 없으므로 제외
rules <- apriori(trans[,-2],parameter = list(support=0.005,target="frequent itemsets"))
Apriori

Parameter specification:
 confidence minval smax arem  aval originalSupport maxtime support minlen
         NA    0.1    1 none FALSE            TRUE       5   0.005      1
 maxlen            target   ext
     10 frequent itemsets FALSE

Algorithmic control:
 filter tree heap memopt load sort verbose
    0.1 TRUE TRUE  FALSE TRUE    2    TRUE

Absolute minimum support count: 3

set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[44 item(s), 730 transaction(s)] done [0.00s].
sorting and recoding items ... [44 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 done [0.00s].
writing ... [1241 set(s)] done [0.00s].
creating S4 object  ... done [0.00s].
  • 크기 1 : 44개
  • 크기 2 : 941개
  • 크기 3 : 256개

summary of quality measures

  • 최소 지지도 : 0.0055
  • 최대 지지도 : 0.1589
summary(rules)
set of 1241 itemsets

most frequent items:
     40      20      27       7      35 (Other)
     76      74      70      68      68    2338

element (itemset/transaction) length distribution:sizes
  1   2   3
 44 941 256

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
  1.000   2.000   2.000   2.171   2.000   3.000

summary of quality measures:
    support
 Min.   :0.005479
 1st Qu.:0.008219
 Median :0.013699
 Mean   :0.017469
 3rd Qu.:0.017808
 Max.   :0.158904

includes transaction ID lists: FALSE

mining info:
        data ntransactions support confidence
 trans[, -2]           730   0.005          1
inspect(rules[1:10])
     items support
[1]  {9}   0.09863014
[2]  {22}  0.11232877
[3]  {28}  0.11643836
[4]  {32}  0.11643836
[5]  {41}  0.11780822
[6]  {42}  0.11917808
[7]  {30}  0.11917808
[8]  {16}  0.12191781
[9]  {21}  0.12328767
[10] {23}  0.12328767

Top 10 of the Support

inspect(sort(rules, by = "support")[1:10])
     items support
[1]  {20}  0.1589041
[2]  {40}  0.1561644
[3]  {34}  0.1547945
[4]  {27}  0.1520548
[5]  {1}   0.1493151
[6]  {37}  0.1479452
[7]  {17}  0.1438356
[8]  {4}   0.1438356
[9]  {14}  0.1438356
[10] {8}   0.1424658

2 Set of Rules

inspect(sort(rules, by = "support")[43:50])
    items   support
[1] {22}    0.11232877
[2] {9}     0.09863014
[3] {20,35} 0.02876712
[4] {3,20}  0.02876712
[5] {31,34} 0.02876712
[6] {8,39}  0.02876712
[7] {33,40} 0.02876712
[8] {27,40} 0.02876712

Find 3 Set of Rules

  • {19,25,28} 0.006849315 is Maximum support 3 Set
inspect(sort(rules[rules@quality$support >= 0.005 & rules@quality$support <= 0.00685], by = "support")[25:40])
     items      support
[1]  {24,43}    0.006849315
[2]  {31,39}    0.006849315
[3]  {19,25,28} 0.006849315
[4]  {15,28,34} 0.006849315
[5]  {4,28,40}  0.006849315
[6]  {10,16,41} 0.006849315
[7]  {34,42,45} 0.006849315
[8]  {5,18,42}  0.006849315
[9]  {14,27,30} 0.006849315
[10] {11,14,21} 0.006849315
[11] {23,29,44} 0.006849315
[12] {23,35,43} 0.006849315
[13] {6,7,15}   0.006849315
[14] {6,18,31}  0.006849315
[15] {11,29,44} 0.006849315
[16] {27,29,40} 0.006849315
df <- as.data.frame(inspect(sort(rules, by = "support")))
       items      support
[1]    {20}       0.158904110
[2]    {40}       0.156164384
[3]    {34}       0.154794521
[4]    {27}       0.152054795
[5]    {1}        0.149315068
[6]    {37}       0.147945205
[7]    {17}       0.143835616
[8]    {4}        0.143835616
[9]    {14}       0.143835616
[10]   {8}        0.142465753
[11]   {5}        0.139726027
[12]   {33}       0.138356164
[13]   {11}       0.138356164
[14]   {43}       0.138356164
[15]   {13}       0.138356164
[16]   {44}       0.136986301
[17]   {7}        0.136986301
[18]   {18}       0.136986301
[19]   {26}       0.136986301
[20]   {25}       0.135616438
[21]   {15}       0.135616438
[22]   {39}       0.135616438
[23]   {10}       0.135616438
[24]   {19}       0.134246575
[25]   {45}       0.134246575
[26]   {31}       0.134246575
[27]   {3}        0.131506849
[28]   {36}       0.131506849
[29]   {24}       0.130136986
[30]   {12}       0.128767123
[31]   {35}       0.126027397
[32]   {6}        0.124657534
[33]   {38}       0.124657534
[34]   {29}       0.124657534
[35]   {21}       0.123287671
[36]   {23}       0.123287671
[37]   {16}       0.121917808
[38]   {42}       0.119178082
[39]   {30}       0.119178082
[40]   {41}       0.117808219
[41]   {28}       0.116438356
[42]   {32}       0.116438356
[43]   {22}       0.112328767
[44]   {9}        0.098630137
[45]   {20,35}    0.028767123
[46]   {3,20}     0.028767123
[47]   {31,34}    0.028767123
[48]   {8,39}     0.028767123
[49]   {33,40}    0.028767123
[50]   {27,40}    0.028767123
[51]   {11,21}    0.027397260
[52]   {7,20}     0.027397260
[53]   {11,26}    0.027397260
[54]   {22,37}    0.026027397
[55]   {17,31}    0.026027397
[56]   {31,40}    0.026027397
[57]   {7,18}     0.026027397
[58]   {7,40}     0.026027397
[59]   {5,20}     0.026027397
[60]   {8,27}     0.026027397
[61]   {4,20}     0.026027397
[62]   {1,34}     0.026027397
[63]   {1,28}     0.024657534
[64]   {1,42}     0.024657534
[65]   {27,35}    0.024657534
[66]   {12,24}    0.024657534
[67]   {12,15}    0.024657534
[68]   {24,27}    0.024657534
[69]   {14,15}    0.024657534
[70]   {10,31}    0.024657534
[71]   {14,39}    0.024657534
[72]   {20,33}    0.024657534
[73]   {5,34}     0.024657534
[74]   {17,20}    0.024657534
[75]   {4,40}     0.024657534
[76]   {37,40}    0.024657534
[77]   {6,28}     0.023287671
[78]   {16,41}    0.023287671
[79]   {14,21}    0.023287671
[80]   {18,23}    0.023287671
[81]   {29,44}    0.023287671
[82]   {35,40}    0.023287671
[83]   {3,24}     0.023287671
[84]   {19,25}    0.023287671
[85]   {19,43}    0.023287671
[86]   {17,45}    0.023287671
[87]   {15,34}    0.023287671
[88]   {18,31}    0.023287671
[89]   {11,39}    0.023287671
[90]   {34,44}    0.023287671
[91]   {4,10}     0.023287671
[92]   {26,43}    0.023287671
[93]   {26,27}    0.023287671
[94]   {13,33}    0.023287671
[95]   {4,33}     0.023287671
[96]   {11,37}    0.023287671
[97]   {37,43}    0.023287671
[98]   {5,14}     0.023287671
[99]   {5,27}     0.023287671
[100]  {1,8}      0.023287671
[101]  {1,17}     0.023287671
[102]  {4,34}     0.023287671
[103]  {1,20}     0.023287671
[104]  {28,40}    0.021917808
[105]  {3,32}     0.021917808
[106]  {14,32}    0.021917808
[107]  {33,41}    0.021917808
[108]  {30,45}    0.021917808
[109]  {14,30}    0.021917808
[110]  {20,23}    0.021917808
[111]  {29,33}    0.021917808
[112]  {1,3}      0.021917808
[113]  {3,27}     0.021917808
[114]  {25,36}    0.021917808
[115]  {36,39}    0.021917808
[116]  {17,36}    0.021917808
[117]  {10,19}    0.021917808
[118]  {19,34}    0.021917808
[119]  {37,45}    0.021917808
[120]  {7,15}     0.021917808
[121]  {10,44}    0.021917808
[122]  {1,10}     0.021917808
[123]  {10,40}    0.021917808
[124]  {18,26}    0.021917808
[125]  {8,18}     0.021917808
[126]  {4,26}     0.021917808
[127]  {8,13}     0.021917808
[128]  {13,37}    0.021917808
[129]  {1,40}     0.021917808
[130]  {11,28}    0.020547945
[131]  {12,32}    0.020547945
[132]  {18,32}    0.020547945
[133]  {41,45}    0.020547945
[134]  {40,41}    0.020547945
[135]  {19,42}    0.020547945
[136]  {30,38}    0.020547945
[137]  {16,29}    0.020547945
[138]  {23,44}    0.020547945
[139]  {6,38}     0.020547945
[140]  {6,13}     0.020547945
[141]  {5,6}      0.020547945
[142]  {6,40}     0.020547945
[143]  {8,38}     0.020547945
[144]  {37,38}    0.020547945
[145]  {38,40}    0.020547945
[146]  {29,43}    0.020547945
[147]  {1,29}     0.020547945
[148]  {35,43}    0.020547945
[149]  {12,40}    0.020547945
[150]  {24,44}    0.020547945
[151]  {20,24}    0.020547945
[152]  {3,11}     0.020547945
[153]  {3,14}     0.020547945
[154]  {3,37}     0.020547945
[155]  {4,19}     0.020547945
[156]  {19,20}    0.020547945
[157]  {18,45}    0.020547945
[158]  {8,45}     0.020547945
[159]  {34,45}    0.020547945
[160]  {4,25}     0.020547945
[161]  {15,26}    0.020547945
[162]  {11,15}    0.020547945
[163]  {31,44}    0.020547945
[164]  {14,31}    0.020547945
[165]  {27,31}    0.020547945
[166]  {17,39}    0.020547945
[167]  {11,44}    0.020547945
[168]  {20,44}    0.020547945
[169]  {7,33}     0.020547945
[170]  {1,18}     0.020547945
[171]  {18,34}    0.020547945
[172]  {14,26}    0.020547945
[173]  {26,40}    0.020547945
[174]  {20,26}    0.020547945
[175]  {33,37}    0.020547945
[176]  {11,13}    0.020547945
[177]  {5,11}     0.020547945
[178]  {27,43}    0.020547945
[179]  {13,20}    0.020547945
[180]  {1,5}      0.020547945
[181]  {4,27}     0.020547945
[182]  {1,37}     0.020547945
[183]  {19,28}    0.019178082
[184]  {13,28}    0.019178082
[185]  {39,41}    0.019178082
[186]  {41,44}    0.019178082
[187]  {15,42}    0.019178082
[188]  {5,42}     0.019178082
[189]  {27,42}    0.019178082
[190]  {24,30}    0.019178082
[191]  {30,43}    0.019178082
[192]  {8,30}     0.019178082
[193]  {17,30}    0.019178082
[194]  {30,34}    0.019178082
[195]  {20,30}    0.019178082
[196]  {10,16}    0.019178082
[197]  {4,16}     0.019178082
[198]  {16,40}    0.019178082
[199]  {18,21}    0.019178082
[200]  {21,26}    0.019178082
[201]  {8,21}     0.019178082
[202]  {21,34}    0.019178082
[203]  {23,35}    0.019178082
[204]  {4,23}     0.019178082
[205]  {6,31}     0.019178082
[206]  {26,29}    0.019178082
[207]  {27,29}    0.019178082
[208]  {33,35}    0.019178082
[209]  {17,35}    0.019178082
[210]  {35,37}    0.019178082
[211]  {12,27}    0.019178082
[212]  {12,34}    0.019178082
[213]  {12,20}    0.019178082
[214]  {24,33}    0.019178082
[215]  {3,13}     0.019178082
[216]  {36,44}    0.019178082
[217]  {33,36}    0.019178082
[218]  {8,36}     0.019178082
[219]  {14,36}    0.019178082
[220]  {20,36}    0.019178082
[221]  {19,45}    0.019178082
[222]  {14,45}    0.019178082
[223]  {15,25}    0.019178082
[224]  {25,33}    0.019178082
[225]  {5,25}     0.019178082
[226]  {25,37}    0.019178082
[227]  {25,34}    0.019178082
[228]  {15,43}    0.019178082
[229]  {15,20}    0.019178082
[230]  {8,31}     0.019178082
[231]  {7,39}     0.019178082
[232]  {18,39}    0.019178082
[233]  {27,39}    0.019178082
[234]  {8,44}     0.019178082
[235]  {17,44}    0.019178082
[236]  {10,37}    0.019178082
[237]  {7,43}     0.019178082
[238]  {7,37}     0.019178082
[239]  {8,33}     0.019178082
[240]  {11,14}    0.019178082
[241]  {8,43}     0.019178082
[242]  {20,43}    0.019178082
[243]  {5,13}     0.019178082
[244]  {13,14}    0.019178082
[245]  {4,5}      0.019178082
[246]  {8,17}     0.019178082
[247]  {8,34}     0.019178082
[248]  {17,34}    0.019178082
[249]  {4,37}     0.019178082
[250]  {14,40}    0.019178082
[251]  {1,27}     0.019178082
[252]  {20,40}    0.019178082
[253]  {5,9}      0.017808219
[254]  {22,36}    0.017808219
[255]  {22,25}    0.017808219
[256]  {10,22}    0.017808219
[257]  {14,22}    0.017808219
[258]  {22,34}    0.017808219
[259]  {28,34}    0.017808219
[260]  {32,45}    0.017808219
[261]  {10,32}    0.017808219
[262]  {32,33}    0.017808219
[263]  {11,32}    0.017808219
[264]  {13,32}    0.017808219
[265]  {17,32}    0.017808219
[266]  {32,40}    0.017808219
[267]  {7,41}     0.017808219
[268]  {4,41}     0.017808219
[269]  {3,42}     0.017808219
[270]  {42,45}    0.017808219
[271]  {7,42}     0.017808219
[272]  {34,42}    0.017808219
[273]  {27,30}    0.017808219
[274]  {16,36}    0.017808219
[275]  {16,25}    0.017808219
[276]  {7,16}     0.017808219
[277]  {16,26}    0.017808219
[278]  {16,17}    0.017808219
[279]  {1,16}     0.017808219
[280]  {21,36}    0.017808219
[281]  {15,21}    0.017808219
[282]  {21,31}    0.017808219
[283]  {23,29}    0.017808219
[284]  {15,23}    0.017808219
[285]  {6,39}     0.017808219
[286]  {6,10}     0.017808219
[287]  {6,37}     0.017808219
[288]  {12,38}    0.017808219
[289]  {7,38}     0.017808219
[290]  {25,29}    0.017808219
[291]  {7,29}     0.017808219
[292]  {26,35}    0.017808219
[293]  {1,35}     0.017808219
[294]  {1,12}     0.017808219
[295]  {10,24}    0.017808219
[296]  {7,24}     0.017808219
[297]  {24,40}    0.017808219
[298]  {3,7}      0.017808219
[299]  {3,4}      0.017808219
[300]  {36,45}    0.017808219
[301]  {11,36}    0.017808219
[302]  {34,36}    0.017808219
[303]  {19,26}    0.017808219
[304]  {5,19}     0.017808219
[305]  {17,19}    0.017808219
[306]  {39,45}    0.017808219
[307]  {25,43}    0.017808219
[308]  {13,25}    0.017808219
[309]  {13,15}    0.017808219
[310]  {11,31}    0.017808219
[311]  {31,37}    0.017808219
[312]  {39,44}    0.017808219
[313]  {5,39}     0.017808219
[314]  {26,44}    0.017808219
[315]  {10,18}    0.017808219
[316]  {10,14}    0.017808219
[317]  {7,8}      0.017808219
[318]  {11,18}    0.017808219
[319]  {13,18}    0.017808219
[320]  {14,18}    0.017808219
[321]  {1,26}     0.017808219
[322]  {26,37}    0.017808219
[323]  {17,33}    0.017808219
[324]  {14,33}    0.017808219
[325]  {4,11}     0.017808219
[326]  {1,11}     0.017808219
[327]  {13,43}    0.017808219
[328]  {13,34}    0.017808219
[329]  {13,40}    0.017808219
[330]  {8,14}     0.017808219
[331]  {4,17}     0.017808219
[332]  {17,40}    0.017808219
[333]  {14,37}    0.017808219
[334]  {14,27}    0.017808219
[335]  {14,20}    0.017808219
[336]  {27,37}    0.017808219
[337]  {27,34}    0.017808219
[338]  {20,27}    0.017808219
[339]  {9,25}     0.016438356
[340]  {4,9}      0.016438356
[341]  {6,22}     0.016438356
[342]  {15,22}    0.016438356
[343]  {5,22}     0.016438356
[344]  {22,40}    0.016438356
[345]  {28,43}    0.016438356
[346]  {17,28}    0.016438356
[347]  {29,32}    0.016438356
[348]  {24,32}    0.016438356
[349]  {32,34}    0.016438356
[350]  {36,41}    0.016438356
[351]  {13,41}    0.016438356
[352]  {1,41}     0.016438356
[353]  {20,41}    0.016438356
[354]  {30,39}    0.016438356
[355]  {18,30}    0.016438356
[356]  {30,37}    0.016438356
[357]  {16,23}    0.016438356
[358]  {16,43}    0.016438356
[359]  {16,34}    0.016438356
[360]  {19,21}    0.016438356
[361]  {21,39}    0.016438356
[362]  {21,43}    0.016438356
[363]  {1,21}     0.016438356
[364]  {23,45}    0.016438356
[365]  {23,25}    0.016438356
[366]  {23,43}    0.016438356
[367]  {8,23}     0.016438356
[368]  {23,34}    0.016438356
[369]  {6,7}      0.016438356
[370]  {6,17}     0.016438356
[371]  {4,6}      0.016438356
[372]  {6,14}     0.016438356
[373]  {6,20}     0.016438356
[374]  {24,38}    0.016438356
[375]  {31,38}    0.016438356
[376]  {18,38}    0.016438356
[377]  {11,38}    0.016438356
[378]  {13,38}    0.016438356
[379]  {14,38}    0.016438356
[380]  {12,29}    0.016438356
[381]  {10,29}    0.016438356
[382]  {5,29}     0.016438356
[383]  {8,29}     0.016438356
[384]  {29,40}    0.016438356
[385]  {35,45}    0.016438356
[386]  {35,44}    0.016438356
[387]  {14,35}    0.016438356
[388]  {12,44}    0.016438356
[389]  {12,33}    0.016438356
[390]  {12,43}    0.016438356
[391]  {11,24}    0.016438356
[392]  {1,24}     0.016438356
[393]  {3,31}     0.016438356
[394]  {3,44}     0.016438356
[395]  {3,10}     0.016438356
[396]  {3,8}      0.016438356
[397]  {3,17}     0.016438356
[398]  {7,36}     0.016438356
[399]  {26,36}    0.016438356
[400]  {36,37}    0.016438356
[401]  {27,36}    0.016438356
[402]  {15,19}    0.016438356
[403]  {19,31}    0.016438356
[404]  {7,19}     0.016438356
[405]  {8,19}     0.016438356
[406]  {14,19}    0.016438356
[407]  {19,27}    0.016438356
[408]  {43,45}    0.016438356
[409]  {13,45}    0.016438356
[410]  {25,39}    0.016438356
[411]  {25,44}    0.016438356
[412]  {8,25}     0.016438356
[413]  {15,39}    0.016438356
[414]  {15,44}    0.016438356
[415]  {10,15}    0.016438356
[416]  {15,37}    0.016438356
[417]  {26,31}    0.016438356
[418]  {31,43}    0.016438356
[419]  {4,31}     0.016438356
[420]  {39,43}    0.016438356
[421]  {13,39}    0.016438356
[422]  {37,39}    0.016438356
[423]  {33,44}    0.016438356
[424]  {5,44}     0.016438356
[425]  {27,44}    0.016438356
[426]  {10,33}    0.016438356
[427]  {10,11}    0.016438356
[428]  {10,27}    0.016438356
[429]  {10,20}    0.016438356
[430]  {7,27}     0.016438356
[431]  {18,43}    0.016438356
[432]  {5,18}     0.016438356
[433]  {4,18}     0.016438356
[434]  {18,37}    0.016438356
[435]  {18,40}    0.016438356
[436]  {13,26}    0.016438356
[437]  {5,26}     0.016438356
[438]  {27,33}    0.016438356
[439]  {33,34}    0.016438356
[440]  {14,43}    0.016438356
[441]  {40,43}    0.016438356
[442]  {13,17}    0.016438356
[443]  {4,13}     0.016438356
[444]  {1,13}     0.016438356
[445]  {5,17}     0.016438356
[446]  {4,8}      0.016438356
[447]  {8,37}     0.016438356
[448]  {17,37}    0.016438356
[449]  {20,37}    0.016438356
[450]  {34,40}    0.016438356
[451]  {20,34}    0.016438356
[452]  {9,21}     0.015068493
[453]  {9,12}     0.015068493
[454]  {9,33}     0.015068493
[455]  {1,9}      0.015068493
[456]  {9,27}     0.015068493
[457]  {22,28}    0.015068493
[458]  {22,42}    0.015068493
[459]  {3,22}     0.015068493
[460]  {22,44}    0.015068493
[461]  {28,30}    0.015068493
[462]  {28,39}    0.015068493
[463]  {26,28}    0.015068493
[464]  {28,37}    0.015068493
[465]  {27,28}    0.015068493
[466]  {6,32}     0.015068493
[467]  {19,32}    0.015068493
[468]  {31,32}    0.015068493
[469]  {1,32}     0.015068493
[470]  {32,37}    0.015068493
[471]  {41,42}    0.015068493
[472]  {3,41}     0.015068493
[473]  {19,41}    0.015068493
[474]  {10,41}    0.015068493
[475]  {11,41}    0.015068493
[476]  {34,41}    0.015068493
[477]  {16,42}    0.015068493
[478]  {23,42}    0.015068493
[479]  {18,42}    0.015068493
[480]  {8,42}     0.015068493
[481]  {3,30}     0.015068493
[482]  {6,16}     0.015068493
[483]  {16,19}    0.015068493
[484]  {16,31}    0.015068493
[485]  {21,24}    0.015068493
[486]  {21,45}    0.015068493
[487]  {21,25}    0.015068493
[488]  {13,21}    0.015068493
[489]  {5,21}     0.015068493
[490]  {4,21}     0.015068493
[491]  {21,37}    0.015068493
[492]  {23,38}    0.015068493
[493]  {23,39}    0.015068493
[494]  {11,23}    0.015068493
[495]  {5,23}     0.015068493
[496]  {1,23}     0.015068493
[497]  {23,40}    0.015068493
[498]  {6,24}     0.015068493
[499]  {6,19}     0.015068493
[500]  {6,44}     0.015068493
[501]  {6,11}     0.015068493
[502]  {29,38}    0.015068493
[503]  {36,38}    0.015068493
[504]  {19,38}    0.015068493
[505]  {38,45}    0.015068493
[506]  {25,38}    0.015068493
[507]  {10,38}    0.015068493
[508]  {34,38}    0.015068493
[509]  {20,38}    0.015068493
[510]  {29,34}    0.015068493
[511]  {24,35}    0.015068493
[512]  {19,35}    0.015068493
[513]  {25,35}    0.015068493
[514]  {15,35}    0.015068493
[515]  {10,35}    0.015068493
[516]  {8,35}     0.015068493
[517]  {34,35}    0.015068493
[518]  {3,12}     0.015068493
[519]  {12,39}    0.015068493
[520]  {7,12}     0.015068493
[521]  {11,12}    0.015068493
[522]  {12,14}    0.015068493
[523]  {24,25}    0.015068493
[524]  {15,24}    0.015068493
[525]  {17,24}    0.015068493
[526]  {24,37}    0.015068493
[527]  {24,34}    0.015068493
[528]  {3,45}     0.015068493
[529]  {3,40}     0.015068493
[530]  {10,36}    0.015068493
[531]  {5,36}     0.015068493
[532]  {19,44}    0.015068493
[533]  {25,45}    0.015068493
[534]  {11,45}    0.015068493
[535]  {5,45}     0.015068493
[536]  {4,45}     0.015068493
[537]  {1,45}     0.015068493
[538]  {27,45}    0.015068493
[539]  {20,45}    0.015068493
[540]  {14,25}    0.015068493
[541]  {25,40}    0.015068493
[542]  {20,25}    0.015068493
[543]  {8,15}     0.015068493
[544]  {15,40}    0.015068493
[545]  {31,33}    0.015068493
[546]  {33,39}    0.015068493
[547]  {34,39}    0.015068493
[548]  {39,40}    0.015068493
[549]  {20,39}    0.015068493
[550]  {14,44}    0.015068493
[551]  {7,26}     0.015068493
[552]  {17,18}    0.015068493
[553]  {18,20}    0.015068493
[554]  {17,26}    0.015068493
[555]  {11,43}    0.015068493
[556]  {11,17}    0.015068493
[557]  {11,27}    0.015068493
[558]  {5,43}     0.015068493
[559]  {34,43}    0.015068493
[560]  {1,4}      0.015068493
[561]  {9,31}     0.013698630
[562]  {9,10}     0.013698630
[563]  {9,17}     0.013698630
[564]  {22,38}    0.013698630
[565]  {22,24}    0.013698630
[566]  {19,22}    0.013698630
[567]  {22,31}    0.013698630
[568]  {7,22}     0.013698630
[569]  {13,22}    0.013698630
[570]  {22,27}    0.013698630
[571]  {20,22}    0.013698630
[572]  {28,36}    0.013698630
[573]  {25,28}    0.013698630
[574]  {15,28}    0.013698630
[575]  {8,28}     0.013698630
[576]  {4,28}     0.013698630
[577]  {21,32}    0.013698630
[578]  {5,32}     0.013698630
[579]  {8,32}     0.013698630
[580]  {4,32}     0.013698630
[581]  {29,41}    0.013698630
[582]  {12,41}    0.013698630
[583]  {41,43}    0.013698630
[584]  {27,41}    0.013698630
[585]  {24,42}    0.013698630
[586]  {26,42}    0.013698630
[587]  {42,43}    0.013698630
[588]  {13,42}    0.013698630
[589]  {17,42}    0.013698630
[590]  {4,42}     0.013698630
[591]  {14,42}    0.013698630
[592]  {40,42}    0.013698630
[593]  {20,42}    0.013698630
[594]  {16,30}    0.013698630
[595]  {6,30}     0.013698630
[596]  {30,36}    0.013698630
[597]  {30,31}    0.013698630
[598]  {30,33}    0.013698630
[599]  {5,30}     0.013698630
[600]  {16,24}    0.013698630
[601]  {16,45}    0.013698630
[602]  {16,44}    0.013698630
[603]  {5,16}     0.013698630
[604]  {16,37}    0.013698630
[605]  {16,20}    0.013698630
[606]  {21,23}    0.013698630
[607]  {6,21}     0.013698630
[608]  {21,29}    0.013698630
[609]  {12,21}    0.013698630
[610]  {21,27}    0.013698630
[611]  {19,23}    0.013698630
[612]  {10,23}    0.013698630
[613]  {7,23}     0.013698630
[614]  {23,26}    0.013698630
[615]  {13,23}    0.013698630
[616]  {14,23}    0.013698630
[617]  {6,12}     0.013698630
[618]  {6,25}     0.013698630
[619]  {6,15}     0.013698630
[620]  {6,18}     0.013698630
[621]  {6,43}     0.013698630
[622]  {1,6}      0.013698630
[623]  {3,38}     0.013698630
[624]  {38,39}    0.013698630
[625]  {38,44}    0.013698630
[626]  {38,43}    0.013698630
[627]  {27,38}    0.013698630
[628]  {29,35}    0.013698630
[629]  {29,39}    0.013698630
[630]  {18,29}    0.013698630
[631]  {11,29}    0.013698630
[632]  {13,29}    0.013698630
[633]  {4,29}     0.013698630
[634]  {29,37}    0.013698630
[635]  {3,35}     0.013698630
[636]  {35,39}    0.013698630
[637]  {13,35}    0.013698630
[638]  {5,35}     0.013698630
[639]  {12,36}    0.013698630
[640]  {12,19}    0.013698630
[641]  {12,25}    0.013698630
[642]  {12,26}    0.013698630
[643]  {12,13}    0.013698630
[644]  {5,12}     0.013698630
[645]  {4,12}     0.013698630
[646]  {24,45}    0.013698630
[647]  {5,24}     0.013698630
[648]  {3,36}     0.013698630
[649]  {3,34}     0.013698630
[650]  {15,36}    0.013698630
[651]  {31,36}    0.013698630
[652]  {18,36}    0.013698630
[653]  {18,19}    0.013698630
[654]  {1,19}     0.013698630
[655]  {19,40}    0.013698630
[656]  {15,45}    0.013698630
[657]  {31,45}    0.013698630
[658]  {40,45}    0.013698630
[659]  {10,25}    0.013698630
[660]  {7,25}     0.013698630
[661]  {25,26}    0.013698630
[662]  {1,25}     0.013698630
[663]  {25,27}    0.013698630
[664]  {5,15}     0.013698630
[665]  {15,27}    0.013698630
[666]  {20,31}    0.013698630
[667]  {26,39}    0.013698630
[668]  {4,39}     0.013698630
[669]  {43,44}    0.013698630
[670]  {40,44}    0.013698630
[671]  {7,10}     0.013698630
[672]  {10,34}    0.013698630
[673]  {5,7}      0.013698630
[674]  {7,17}     0.013698630
[675]  {1,7}      0.013698630
[676]  {18,33}    0.013698630
[677]  {26,33}    0.013698630
[678]  {26,34}    0.013698630
[679]  {1,33}     0.013698630
[680]  {8,11}     0.013698630
[681]  {17,43}    0.013698630
[682]  {4,43}     0.013698630
[683]  {13,27}    0.013698630
[684]  {5,8}      0.013698630
[685]  {5,37}     0.013698630
[686]  {14,17}    0.013698630
[687]  {17,27}    0.013698630
[688]  {4,14}     0.013698630
[689]  {9,32}     0.012328767
[690]  {9,41}     0.012328767
[691]  {9,16}     0.012328767
[692]  {6,9}      0.012328767
[693]  {9,29}     0.012328767
[694]  {7,9}      0.012328767
[695]  {9,34}     0.012328767
[696]  {9,40}     0.012328767
[697]  {22,33}    0.012328767
[698]  {11,22}    0.012328767
[699]  {4,22}     0.012328767
[700]  {23,28}    0.012328767
[701]  {28,38}    0.012328767
[702]  {12,28}    0.012328767
[703]  {28,45}    0.012328767
[704]  {28,44}    0.012328767
[705]  {7,28}     0.012328767
[706]  {20,28}    0.012328767
[707]  {32,42}    0.012328767
[708]  {32,44}    0.012328767
[709]  {30,41}    0.012328767
[710]  {8,41}     0.012328767
[711]  {37,41}    0.012328767
[712]  {29,42}    0.012328767
[713]  {12,42}    0.012328767
[714]  {36,42}    0.012328767
[715]  {33,42}    0.012328767
[716]  {37,42}    0.012328767
[717]  {21,30}    0.012328767
[718]  {23,30}    0.012328767
[719]  {19,30}    0.012328767
[720]  {7,30}     0.012328767
[721]  {26,30}    0.012328767
[722]  {30,40}    0.012328767
[723]  {16,38}    0.012328767
[724]  {12,16}    0.012328767
[725]  {11,16}    0.012328767
[726]  {21,44}    0.012328767
[727]  {21,33}    0.012328767
[728]  {17,21}    0.012328767
[729]  {23,36}    0.012328767
[730]  {23,27}    0.012328767
[731]  {6,26}     0.012328767
[732]  {6,8}      0.012328767
[733]  {6,34}     0.012328767
[734]  {26,38}    0.012328767
[735]  {33,38}    0.012328767
[736]  {17,38}    0.012328767
[737]  {1,38}     0.012328767
[738]  {24,29}    0.012328767
[739]  {3,29}     0.012328767
[740]  {29,36}    0.012328767
[741]  {17,29}    0.012328767
[742]  {20,29}    0.012328767
[743]  {35,36}    0.012328767
[744]  {31,35}    0.012328767
[745]  {12,45}    0.012328767
[746]  {10,12}    0.012328767
[747]  {12,18}    0.012328767
[748]  {12,37}    0.012328767
[749]  {24,36}    0.012328767
[750]  {18,24}    0.012328767
[751]  {24,26}    0.012328767
[752]  {13,24}    0.012328767
[753]  {8,24}     0.012328767
[754]  {4,24}     0.012328767
[755]  {3,15}     0.012328767
[756]  {3,43}     0.012328767
[757]  {3,5}      0.012328767
[758]  {36,43}    0.012328767
[759]  {1,36}     0.012328767
[760]  {36,40}    0.012328767
[761]  {13,19}    0.012328767
[762]  {33,45}    0.012328767
[763]  {25,31}    0.012328767
[764]  {17,25}    0.012328767
[765]  {15,18}    0.012328767
[766]  {15,17}    0.012328767
[767]  {4,15}     0.012328767
[768]  {1,15}     0.012328767
[769]  {7,31}     0.012328767
[770]  {13,31}    0.012328767
[771]  {5,31}     0.012328767
[772]  {10,39}    0.012328767
[773]  {7,44}     0.012328767
[774]  {18,44}    0.012328767
[775]  {1,44}     0.012328767
[776]  {10,26}    0.012328767
[777]  {8,10}     0.012328767
[778]  {10,17}    0.012328767
[779]  {7,34}     0.012328767
[780]  {18,27}    0.012328767
[781]  {1,43}     0.012328767
[782]  {8,20}     0.012328767
[783]  {1,14}     0.012328767
[784]  {14,34}    0.012328767
[785]  {34,37}    0.012328767
[786]  {9,28}     0.010958904
[787]  {9,38}     0.010958904
[788]  {9,35}     0.010958904
[789]  {9,24}     0.010958904
[790]  {9,15}     0.010958904
[791]  {9,39}     0.010958904
[792]  {9,26}     0.010958904
[793]  {9,11}     0.010958904
[794]  {9,43}     0.010958904
[795]  {9,37}     0.010958904
[796]  {21,22}    0.010958904
[797]  {22,23}    0.010958904
[798]  {22,35}    0.010958904
[799]  {22,39}    0.010958904
[800]  {22,43}    0.010958904
[801]  {17,22}    0.010958904
[802]  {28,32}    0.010958904
[803]  {28,42}    0.010958904
[804]  {28,35}    0.010958904
[805]  {10,28}    0.010958904
[806]  {5,28}     0.010958904
[807]  {32,41}    0.010958904
[808]  {25,32}    0.010958904
[809]  {27,32}    0.010958904
[810]  {20,32}    0.010958904
[811]  {6,41}     0.010958904
[812]  {24,41}    0.010958904
[813]  {25,41}    0.010958904
[814]  {15,41}    0.010958904
[815]  {26,41}    0.010958904
[816]  {17,41}    0.010958904
[817]  {30,42}    0.010958904
[818]  {25,42}    0.010958904
[819]  {10,42}    0.010958904
[820]  {30,35}    0.010958904
[821]  {12,30}    0.010958904
[822]  {15,30}    0.010958904
[823]  {30,44}    0.010958904
[824]  {10,30}    0.010958904
[825]  {13,30}    0.010958904
[826]  {16,35}    0.010958904
[827]  {3,16}     0.010958904
[828]  {16,33}    0.010958904
[829]  {16,27}    0.010958904
[830]  {7,21}     0.010958904
[831]  {21,40}    0.010958904
[832]  {20,21}    0.010958904
[833]  {12,23}    0.010958904
[834]  {3,23}     0.010958904
[835]  {23,33}    0.010958904
[836]  {23,37}    0.010958904
[837]  {6,35}     0.010958904
[838]  {4,38}     0.010958904
[839]  {29,31}    0.010958904
[840]  {12,35}    0.010958904
[841]  {11,35}    0.010958904
[842]  {4,35}     0.010958904
[843]  {12,17}    0.010958904
[844]  {19,24}    0.010958904
[845]  {24,31}    0.010958904
[846]  {24,39}    0.010958904
[847]  {3,18}     0.010958904
[848]  {3,33}     0.010958904
[849]  {19,36}    0.010958904
[850]  {13,36}    0.010958904
[851]  {19,39}    0.010958904
[852]  {7,45}     0.010958904
[853]  {26,45}    0.010958904
[854]  {18,25}    0.010958904
[855]  {1,31}     0.010958904
[856]  {13,44}    0.010958904
[857]  {10,43}    0.010958904
[858]  {10,13}    0.010958904
[859]  {5,10}     0.010958904
[860]  {7,13}     0.010958904
[861]  {7,14}     0.010958904
[862]  {33,43}    0.010958904
[863]  {11,20}    0.010958904
[864]  {5,40}     0.010958904
[865]  {9,23}     0.009589041
[866]  {9,36}     0.009589041
[867]  {18,22}    0.009589041
[868]  {22,26}    0.009589041
[869]  {8,22}     0.009589041
[870]  {1,22}     0.009589041
[871]  {28,41}    0.009589041
[872]  {24,28}    0.009589041
[873]  {18,28}    0.009589041
[874]  {28,33}    0.009589041
[875]  {23,32}    0.009589041
[876]  {32,35}    0.009589041
[877]  {32,36}    0.009589041
[878]  {15,32}    0.009589041
[879]  {7,32}     0.009589041
[880]  {21,41}    0.009589041
[881]  {38,41}    0.009589041
[882]  {35,41}    0.009589041
[883]  {5,41}     0.009589041
[884]  {38,42}    0.009589041
[885]  {35,42}    0.009589041
[886]  {31,42}    0.009589041
[887]  {42,44}    0.009589041
[888]  {11,30}    0.009589041
[889]  {1,30}     0.009589041
[890]  {16,21}    0.009589041
[891]  {15,16}    0.009589041
[892]  {16,39}    0.009589041
[893]  {16,18}    0.009589041
[894]  {3,21}     0.009589041
[895]  {23,24}    0.009589041
[896]  {23,31}    0.009589041
[897]  {17,23}    0.009589041
[898]  {3,6}      0.009589041
[899]  {6,27}     0.009589041
[900]  {35,38}    0.009589041
[901]  {15,29}    0.009589041
[902]  {14,29}    0.009589041
[903]  {7,35}     0.009589041
[904]  {12,31}    0.009589041
[905]  {14,24}    0.009589041
[906]  {3,19}     0.009589041
[907]  {3,39}     0.009589041
[908]  {3,26}     0.009589041
[909]  {4,36}     0.009589041
[910]  {11,19}    0.009589041
[911]  {44,45}    0.009589041
[912]  {10,45}    0.009589041
[913]  {11,25}    0.009589041
[914]  {15,31}    0.009589041
[915]  {1,39}     0.009589041
[916]  {4,44}     0.009589041
[917]  {7,11}     0.009589041
[918]  {4,7}      0.009589041
[919]  {5,33}     0.009589041
[920]  {11,34}    0.009589041
[921]  {8,40}     0.009589041
[922]  {9,22}     0.008219178
[923]  {9,42}     0.008219178
[924]  {9,45}     0.008219178
[925]  {9,13}     0.008219178
[926]  {9,20}     0.008219178
[927]  {22,30}    0.008219178
[928]  {16,22}    0.008219178
[929]  {22,29}    0.008219178
[930]  {12,22}    0.008219178
[931]  {22,45}    0.008219178
[932]  {28,29}    0.008219178
[933]  {32,38}    0.008219178
[934]  {32,39}    0.008219178
[935]  {23,41}    0.008219178
[936]  {14,41}    0.008219178
[937]  {39,42}    0.008219178
[938]  {4,30}     0.008219178
[939]  {13,16}    0.008219178
[940]  {8,16}     0.008219178
[941]  {14,16}    0.008219178
[942]  {21,38}    0.008219178
[943]  {21,35}    0.008219178
[944]  {10,21}    0.008219178
[945]  {6,45}     0.008219178
[946]  {15,38}    0.008219178
[947]  {5,38}     0.008219178
[948]  {29,45}    0.008219178
[949]  {18,35}    0.008219178
[950]  {3,25}     0.008219178
[951]  {19,33}    0.008219178
[952]  {19,37}    0.008219178
[953]  {15,33}    0.008219178
[954]  {11,33}    0.008219178
[955]  {14,30,38} 0.008219178
[956]  {7,18,23}  0.008219178
[957]  {20,26,35} 0.008219178
[958]  {12,24,27} 0.008219178
[959]  {3,20,24}  0.008219178
[960]  {11,26,44} 0.008219178
[961]  {9,30}     0.006849315
[962]  {3,9}      0.006849315
[963]  {9,19}     0.006849315
[964]  {9,44}     0.006849315
[965]  {9,18}     0.006849315
[966]  {9,14}     0.006849315
[967]  {22,32}    0.006849315
[968]  {16,28}    0.006849315
[969]  {28,31}    0.006849315
[970]  {14,28}    0.006849315
[971]  {30,32}    0.006849315
[972]  {16,32}    0.006849315
[973]  {32,43}    0.006849315
[974]  {18,41}    0.006849315
[975]  {21,42}    0.006849315
[976]  {6,42}     0.006849315
[977]  {11,42}    0.006849315
[978]  {29,30}    0.006849315
[979]  {25,30}    0.006849315
[980]  {6,23}     0.006849315
[981]  {6,29}     0.006849315
[982]  {6,36}     0.006849315
[983]  {6,33}     0.006849315
[984]  {19,29}    0.006849315
[985]  {24,43}    0.006849315
[986]  {31,39}    0.006849315
[987]  {19,25,28} 0.006849315
[988]  {15,28,34} 0.006849315
[989]  {4,28,40}  0.006849315
[990]  {10,16,41} 0.006849315
[991]  {34,42,45} 0.006849315
[992]  {5,18,42}  0.006849315
[993]  {14,27,30} 0.006849315
[994]  {11,14,21} 0.006849315
[995]  {23,29,44} 0.006849315
[996]  {23,35,43} 0.006849315
[997]  {6,7,15}   0.006849315
[998]  {6,18,31}  0.006849315
[999]  {11,29,44} 0.006849315
[1000] {27,29,40} 0.006849315
[1001] {35,43,45} 0.006849315
[1002] {14,35,39} 0.006849315
[1003] {20,35,40} 0.006849315
[1004] {12,15,24} 0.006849315
[1005] {4,12,24}  0.006849315
[1006] {12,33,40} 0.006849315
[1007] {3,20,44}  0.006849315
[1008] {3,8,27}   0.006849315
[1009] {17,26,36} 0.006849315
[1010] {4,10,19}  0.006849315
[1011] {19,26,27} 0.006849315
[1012] {4,19,20}  0.006849315
[1013] {8,18,45}  0.006849315
[1014] {17,34,45} 0.006849315
[1015] {7,20,25}  0.006849315
[1016] {7,15,43}  0.006849315
[1017] {31,34,44} 0.006849315
[1018] {18,31,34} 0.006849315
[1019] {17,20,31} 0.006849315
[1020] {10,11,39} 0.006849315
[1021] {8,34,39}  0.006849315
[1022] {7,33,40}  0.006849315
[1023] {13,33,37} 0.006849315
[1024] {4,33,40}  0.006849315
[1025] {33,37,40} 0.006849315
[1026] {5,14,20}  0.006849315
[1027] {1,5,34}   0.006849315
[1028] {8,9}      0.005479452
[1029] {3,28}     0.005479452
[1030] {37,44}    0.005479452
[1031] {8,26}     0.005479452
[1032] {11,40}    0.005479452
[1033] {1,9,21}   0.005479452
[1034] {1,9,17}   0.005479452
[1035] {5,22,42}  0.005479452
[1036] {16,22,37} 0.005479452
[1037] {21,22,37} 0.005479452
[1038] {22,35,40} 0.005479452
[1039] {7,22,40}  0.005479452
[1040] {7,20,22}  0.005479452
[1041] {22,27,40} 0.005479452
[1042] {1,28,41}  0.005479452
[1043] {6,11,28}  0.005479452
[1044] {6,17,28}  0.005479452
[1045] {1,6,28}   0.005479452
[1046] {6,28,40}  0.005479452
[1047] {19,28,38} 0.005479452
[1048] {11,26,28} 0.005479452
[1049] {8,13,28}  0.005479452
[1050] {1,17,28}  0.005479452
[1051] {1,28,34}  0.005479452
[1052] {1,28,40}  0.005479452
[1053] {27,28,40} 0.005479452
[1054] {32,40,41} 0.005479452
[1055] {13,32,42} 0.005479452
[1056] {6,31,32}  0.005479452
[1057] {12,13,32} 0.005479452
[1058] {3,24,32}  0.005479452
[1059] {3,32,45}  0.005479452
[1060] {1,3,32}   0.005479452
[1061] {19,20,32} 0.005479452
[1062] {18,31,32} 0.005479452
[1063] {4,10,32}  0.005479452
[1064] {18,32,43} 0.005479452
[1065] {32,33,40} 0.005479452
[1066] {11,14,32} 0.005479452
[1067] {14,32,37} 0.005479452
[1068] {16,29,41} 0.005479452
[1069] {16,40,41} 0.005479452
[1070] {3,40,41}  0.005479452
[1071] {36,41,44} 0.005479452
[1072] {20,36,41} 0.005479452
[1073] {39,41,45} 0.005479452
[1074] {7,39,41}  0.005479452
[1075] {33,41,44} 0.005479452
[1076] {33,40,41} 0.005479452
[1077] {13,40,41} 0.005479452
[1078] {17,20,41} 0.005479452
[1079] {16,42,45} 0.005479452
[1080] {24,27,42} 0.005479452
[1081] {3,8,42}   0.005479452
[1082] {3,14,42}  0.005479452
[1083] {19,27,42} 0.005479452
[1084] {7,42,45}  0.005479452
[1085] {15,26,42} 0.005479452
[1086] {1,7,42}   0.005479452
[1087] {7,37,42}  0.005479452
[1088] {26,27,42} 0.005479452
[1089] {30,38,45} 0.005479452
[1090] {17,30,38} 0.005479452
[1091] {17,30,31} 0.005479452
[1092] {14,30,31} 0.005479452
[1093] {30,39,43} 0.005479452
[1094] {8,30,43}  0.005479452
[1095] {17,20,30} 0.005479452
[1096] {16,23,25} 0.005479452
[1097] {16,29,44} 0.005479452
[1098] {4,16,29}  0.005479452
[1099] {16,27,35} 0.005479452
[1100] {16,17,36} 0.005479452
[1101] {16,34,45} 0.005479452
[1102] {11,16,44} 0.005479452
[1103] {1,10,16}  0.005479452
[1104] {7,16,40}  0.005479452
[1105] {11,21,38} 0.005479452
[1106] {1,21,29}  0.005479452
[1107] {21,24,26} 0.005479452
[1108] {21,25,36} 0.005479452
[1109] {21,26,36} 0.005479452
[1110] {11,21,45} 0.005479452
[1111] {5,21,25}  0.005479452
[1112] {15,21,34} 0.005479452
[1113] {8,21,31}  0.005479452
[1114] {21,27,31} 0.005479452
[1115] {18,21,26} 0.005479452
[1116] {11,18,21} 0.005479452
[1117] {14,18,21} 0.005479452
[1118] {11,21,43} 0.005479452
[1119] {11,17,21} 0.005479452
[1120] {8,14,21}  0.005479452
[1121] {23,29,33} 0.005479452
[1122] {23,26,39} 0.005479452
[1123] {20,23,44} 0.005479452
[1124] {6,38,39}  0.005479452
[1125] {6,7,38}   0.005479452
[1126] {6,35,40}  0.005479452
[1127] {4,6,10}   0.005479452
[1128] {6,10,37}  0.005479452
[1129] {5,6,26}   0.005479452
[1130] {6,13,40}  0.005479452
[1131] {4,5,6}    0.005479452
[1132] {24,33,38} 0.005479452
[1133] {18,31,38} 0.005479452
[1134] {7,10,38}  0.005479452
[1135] {7,38,40}  0.005479452
[1136] {18,26,38} 0.005479452
[1137] {24,26,29} 0.005479452
[1138] {27,29,36} 0.005479452
[1139] {7,29,44}  0.005479452
[1140] {7,29,43}  0.005479452
[1141] {26,29,33} 0.005479452
[1142] {11,26,29} 0.005479452
[1143] {5,29,34}  0.005479452
[1144] {1,8,29}   0.005479452
[1145] {1,17,29}  0.005479452
[1146] {24,27,35} 0.005479452
[1147] {35,36,44} 0.005479452
[1148] {33,35,36} 0.005479452
[1149] {17,35,36} 0.005479452
[1150] {35,37,45} 0.005479452
[1151] {15,26,35} 0.005479452
[1152] {20,35,44} 0.005479452
[1153] {27,33,35} 0.005479452
[1154] {20,33,35} 0.005479452
[1155] {27,35,43} 0.005479452
[1156] {20,35,43} 0.005479452
[1157] {5,27,35}  0.005479452
[1158] {5,34,35}  0.005479452
[1159] {17,20,35} 0.005479452
[1160] {4,20,35}  0.005479452
[1161] {27,35,37} 0.005479452
[1162] {3,12,20}  0.005479452
[1163] {7,12,15}  0.005479452
[1164] {12,15,34} 0.005479452
[1165] {3,24,33}  0.005479452
[1166] {7,15,24}  0.005479452
[1167] {24,33,40} 0.005479452
[1168] {5,20,24}  0.005479452
[1169] {3,11,39}  0.005479452
[1170] {3,33,37}  0.005479452
[1171] {3,11,37}  0.005479452
[1172] {3,5,20}   0.005479452
[1173] {1,3,27}   0.005479452
[1174] {1,3,20}   0.005479452
[1175] {3,20,27}  0.005479452
[1176] {25,36,39} 0.005479452
[1177] {25,33,36} 0.005479452
[1178] {14,15,36} 0.005479452
[1179] {26,31,36} 0.005479452
[1180] {8,36,39}  0.005479452
[1181] {17,36,39} 0.005479452
[1182] {27,36,39} 0.005479452
[1183] {10,36,44} 0.005479452
[1184] {14,18,36} 0.005479452
[1185] {5,34,36}  0.005479452
[1186] {10,19,45} 0.005479452
[1187] {8,19,25}  0.005479452
[1188] {19,25,34} 0.005479452
[1189] {14,15,19} 0.005479452
[1190] {15,19,34} 0.005479452
[1191] {8,19,39}  0.005479452
[1192] {10,19,40} 0.005479452
[1193] {13,18,19} 0.005479452
[1194] {14,19,43} 0.005479452
[1195] {4,8,19}   0.005479452
[1196] {8,19,34}  0.005479452
[1197] {18,31,45} 0.005479452
[1198] {13,18,45} 0.005479452
[1199] {13,33,45} 0.005479452
[1200] {37,43,45} 0.005479452
[1201] {15,25,43} 0.005479452
[1202] {17,25,39} 0.005479452
[1203] {25,27,34} 0.005479452
[1204] {14,15,18} 0.005479452
[1205] {14,15,26} 0.005479452
[1206] {13,15,34} 0.005479452
[1207] {5,10,31}  0.005479452
[1208] {10,17,31} 0.005479452
[1209] {4,31,34}  0.005479452
[1210] {14,31,40} 0.005479452
[1211] {31,37,40} 0.005479452
[1212] {8,18,39}  0.005479452
[1213] {13,14,39} 0.005479452
[1214] {8,17,39}  0.005479452
[1215] {4,8,39}   0.005479452
[1216] {8,14,39}  0.005479452
[1217] {1,8,39}   0.005479452
[1218] {10,33,44} 0.005479452
[1219] {5,34,44}  0.005479452
[1220] {17,20,44} 0.005479452
[1221] {4,10,40}  0.005479452
[1222] {1,10,40}  0.005479452
[1223] {1,10,20}  0.005479452
[1224] {7,18,20}  0.005479452
[1225] {7,20,33}  0.005479452
[1226] {5,7,20}   0.005479452
[1227] {1,7,37}   0.005479452
[1228] {7,37,40}  0.005479452
[1229] {1,8,18}   0.005479452
[1230] {26,40,43} 0.005479452
[1231] {13,26,34} 0.005479452
[1232] {11,13,33} 0.005479452
[1233] {13,33,43} 0.005479452
[1234] {11,37,43} 0.005479452
[1235] {4,11,20}  0.005479452
[1236] {13,37,43} 0.005479452
[1237] {17,27,43} 0.005479452
[1238] {5,13,14}  0.005479452
[1239] {8,17,27}  0.005479452
[1240] {4,8,27}   0.005479452
[1241] {8,27,40}  0.005479452
print(head(df[1000:10000,]))
            items     support
[1000] {27,29,40} 0.006849315
[1001] {35,43,45} 0.006849315
[1002] {14,35,39} 0.006849315
[1003] {20,35,40} 0.006849315
[1004] {12,15,24} 0.006849315
[1005]  {4,12,24} 0.006849315
library(stringr)
df$items = str_replace(string = df$items,pattern = "\\{",replacement = "")
df$items = str_replace(string = df$items,pattern = "\\}",replacement = "")
print(head(df[1000:10000,]))
          items     support
[1000] 27,29,40 0.006849315
[1001] 35,43,45 0.006849315
[1002] 14,35,39 0.006849315
[1003] 20,35,40 0.006849315
[1004] 12,15,24 0.006849315
[1005]  4,12,24 0.006849315

4개 이상의 조합을 얻기 위한 지지도 하향 조정

rules2 <- apriori(trans[,-2],parameter = list(support=0.0005,target="frequent itemsets"))
summary(rules2)
Apriori

Parameter specification:
 confidence minval smax arem  aval originalSupport maxtime support minlen
         NA    0.1    1 none FALSE            TRUE       5   5e-04      1
 maxlen            target   ext
     10 frequent itemsets FALSE

Algorithmic control:
 filter tree heap memopt load sort verbose
    0.1 TRUE TRUE  FALSE TRUE    2    TRUE

Absolute minimum support count: 0

set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[44 item(s), 730 transaction(s)] done [0.00s].
sorting and recoding items ... [44 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 5 6 done [0.01s].
writing ... [23745 set(s)] done [0.03s].
creating S4 object  ... done [0.01s].



set of 23745 itemsets

most frequent items:
     40      20      27      34      37 (Other)
   2360    2358    2275    2269    2261   78058

element (itemset/transaction) length distribution:sizes
   1    2    3    4    5    6
  44  946 8545 9675 3900  635

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
  1.000   3.000   4.000   3.773   4.000   6.000

summary of quality measures:
    support
 Min.   :0.001370
 1st Qu.:0.001370
 Median :0.001370
 Mean   :0.002478
 3rd Qu.:0.001370
 Max.   :0.158904

includes transaction ID lists: FALSE

mining info:
        data ntransactions support confidence
 trans[, -2]           730   5e-04          1
inspect(sort(rules2[rules2@quality$support >= 0.001 & rules2@quality$support <= 0.0015], by = "support")[4870:4880])
     items        support
[1]  {1,20,34}    0.001369863
[2]  {20,27,37}   0.001369863
[3]  {20,34,37}   0.001369863
[4]  {20,34,40}   0.001369863
[5]  {3,9,22,42}  0.001369863
[6]  {9,11,22,42} 0.001369863
[7]  {4,9,22,42}  0.001369863
[8]  {9,21,22,30} 0.001369863
[9]  {6,9,22,30}  0.001369863
[10] {9,22,24,30} 0.001369863
[11] {9,11,22,30} 0.001369863

로또 선택 전략

여러가지 번호를 선택하는 방향이 있을거라고 판단 된다.

**지지도 => 그 숫자 또는 숫자의 집합이 나올 확률 **
  1. 개별의 숫자 6개 ( 지지도 상위 6개 ) 선택
  2. 1 1 1 3 / 1 1 3 1 / 1 3 1 1 / 3 1 1 1
  3. 1 1 2 2 / 1 2 1 2 / 1 2 2 1 / 2 1 2 1 / 2 1 1 2 / 2 2 1 1 과 같은 순으로 선택

1. 개별 지지도 상위 6개 선택

  • 20,40,34,27,1,37
  • 확률 0.00001290….
# 개별 확률의 곱으로 전체 확률을 표현.
prob <- 1
for(i in 1:6){
    #print(paste(df[i,1]," ",df[i,2]))
    #print(df[i,1])
    prob <- prob * df[i,2]
    print(paste("cusum : ",prob))
}
print(prob)
[1] "cusum :  0.158904109589041"
[1] "cusum :  0.0248151623193845"
[1] "cusum :  0.00384125115354856"
[1] "cusum :  0.000584080654854644"
[1] "cusum :  8.72120429851455e-05"
[1] "cusum :  1.29026036197202e-05"
[1] 1.29026e-05

2. 개별 항목 3개, 3개 집합 1개 선택

  • 최상위 개별 선택 3개 항목
  • {20} 0.1589041
  • {40} 0.1561644
  • {34} 0.1547945
  • 3개 항목 최상위 위의 숫자를 제외한
  • {19,25,28} 0.006849315
  • 20,40,34,19,25,28
  • 확률 : 0.0000263

3. 3개의 집단 2개 선택

  • {19,25,28} 0.006849315
  • {10,16,41} 0.006849315
  • 확률 : 0.000049

4 + 2 Set 조합

  • {3,9,22,42} 0.001369863
  • {20,35} 0.02876712
  • 확률 : 0.000042

결론

  • 개별 항목이 나올 확률은 비슷하게 나온다. => 즉, 특정 숫자가 많이 나오지는 않는다.
  • 개별 항목이 확률이 높게 나타나더라도 조합의 갯수가 많은 숫자를 선택하는 것이 당첨될 확률이 높다.
  • 현재까지 나온 숫자로 본 결과 3,3개의 조합이 가장 크게 나왔다.
  • 하지만 최종 결론은 수치와 데이터를 믿고 로또를 하는 일은 수치를 다루는 사람이 아니라고 생각되며, 운과 행운을 빌어 재미삼아 하길 기원한다.